Partial Differentiation





Defination of Partial Differentiation

 

If f is a function of several variables x_1 , x_2 , \cdots x_n , then the derivative of f w.r.t. x_1 keeping other variables constant is called partial derivative of f w.r.t. x_1 and is denoted by \dfrac{\delta f}{\delta x_1} or by f_1 and is defined as:

\dfrac{\delta f}{\delta x_1} = \underset{h \rightarrow 0}{ lim} \dfrac{f ( X_1 + h , x_2 , x_3 , \cdots x_n ) - f ( x_1 , x_2 , \cdots x_n ) }{h} provided the limit exists.

 

2 . \dfrac{ \delta ^2 f}{ \delta ^2 f} = \dfrac{\delta}{\delta x} ( \dfrac{\delta f}{\delta x} ) , \dfrac{\delta ^2 f}{\delta y^2} = \dfrac{\delta}{\delta y} ( \dfrac{\delta f}{\delta y} )

 

\dfrac{\delta ^2f}{\delta x \delta y} = \dfrac{\delta}{\delta x} ( \dfrac{\delta f}{\delta y} ) , \dfrac{\delta ^2 f}{\delta y \delta x} = \dfrac{\delta}{\delta y} ( \dfrac{\delta f}{\delta x} )

 

3. if f=f(x,y) and partial derivates are continuous then \dfrac{ \delta ^2 f}{\delta x \delta y} = \dfrac{\delta ^2 f}{\delta y \delta x}

 

4. if f=f(x,y), then df = ( \dfrac{\delta f}{\delta x} ) dx + ( \dfrac{ \delta f}{ \delta y} ) dy . if g=g (x,y,z), then dg = ( \dfrac{\delta g}{\delta x} dx + ( \dfrac{ \delta g}{ \delta y} dy + ( \dfrac{ \delta g}{ \delta z} ) dz .

 

if f=f(x,y) and x = \phi ( t ) , y = \psi ( t ) , then:

 

df = ( \dfrac{ \delta f}{ \delta x} ) dx + ( \dfrac{ \delta f}{ \delta y} ) dy

 

And so \dfrac{df}{dt} = ( \dfrac{ \delta f}{ \delta x} ) \dfrac{dx}{dt} + ( \dfrac{ \delta f}{\delta y} ) \dfrac{dy}{dt}

 

 

Homogenous Function

 

If f is a homogenous function of x and y of degree n, then it may be put in the form f = x^n F ( \dfrac{y}{x} ) .

Example:

f = X^4 + 4 X^3 y + y^4 = X^4 [ 1 + 4 ( \dfrac{y}{x} ) + ( \dfrac{y}{x} ) ^4 ] = x^4F ( \dfrac{y}{x} )

 

 

Euler’s theorem

 

 

If f is a homogenous function of x and y of degree n , then x \dfrac{ \delta f}{ \delta x} + y \dfrac{ \delta f}{ \delta y} = nf

Deduction: From this, we get some important results as follows:

 

Note: The above results are very important for doing problems.

Note:

(1) if f = \dfrac{ x^{ \dfrac{2}{5}} + x^{ \dfrac{4}{5}} , y^{\dfrac{3}{5}}}{xy^2 + x^2 y} , then degree of f is \dfrac{7}{5} - 3 = - \dfrac{8}{5} and f is homogenous.

(2) If  u = sin ^{-1} ( \dfrac{ X^2 y}{xy^3 + X^4} )

Then  sin u = f= \dfrac{x^2 y}{xy^3 + x^4} is homogenous degree 3 -4 = -1.



Related posts:

  1. Dalton’s Law of Partial Pressure Dalton’s Law of Partial Pressure (1807): This law states that,...
  2. Derivative of simple algebraic or polynomial functions. The derivative and calculations on finding derivative of simple algebraic functions...
  3. Exact differential equation Exact differential equation A differential equation is a equation used...
  4. Derivative Formula Derivative Formulas Derivative is a rate of change of function...
  5. Application of Differential Equation Application of Differential Equation   Differential equation can be defined...