Formulas for Area of a Triangle.





There are a lot of formulas and techniques to find the area of a triangle. We can use many different formulas to calculate area of a triangle according to the given conditions. Here we shall derive some of the main formulas used to calculate area of a triangle.

Formulas for Area of a Triangle:

The area of a triangle is denoted by the symbol delta ( \Delta )

We shall appeal to the formula:

\Delta = \frac{1}{2} bc \sin A = \frac{1}{2} ac \sin B = \frac{1}{2} ab \sin C

And the half angle formula:

\sin \frac{1}{2} A = \sqrt{\dfrac{(s-b)(s-c)}{bc}} \, \, \, , \, \, \, \cos \frac{1}{2} A = \sqrt{\dfrac{s(s-a)}{bc}} etc.

 

Where “s” is the semi circumference of the triangle or, s = \frac{a+b+c}{2}

 

We shall now derive different formula for the area of triangle:

First formula for the area of a triangle:

\Delta = \frac{1}{2} bc \sin A = \frac{1}{2} bc . 2 \sin \frac{A}{2} \cos \frac{A}{2} \\ \\ \\ or , \Delta = bc . \sqrt{\dfrac{s(s-a)(s-b)(s-c)}{bc . bc}} \\ \\ \\ or , \Delta = \sqrt{s(s-a)(s-b)(s-c)}

 

Second formula for the area of a triangle:

\Delta = \sqrt{s(s-a)(s-b)(s-c)}

Now , as 2s = (a+b+c)

\Delta = \frac{1}{4} \sqrt{(a+b-c)(b+c-a)(c+a-b)(a+b-c)} \\ \\ So , \Delta = \frac{1}{4} \sqrt{2b^2 c^2 + 2c^2 a^2 + 2a^2 b^2 - a^4 - b^4 - c^4}

 

Third formula for the area of a triangle:

\Delta = \frac{1}{2} bc \sin A

Now using sine law:

\Delta = \frac{1}{2} bc \frac{a}{2R} \\ \\ So , \Delta = \dfrac{abc}{4R}

Related posts:

  1. Half Angle formulas Half Angle formulas. Trigonometric half angles formula. Half angle formula...
  2. Trigonometric transformation formulas Trigonometric transformation formulas. Trigonometric formulas used to transform an trigonometric...
  3. Algebraic Formulas Algebra is one of the most basic part of mathematics...
  4. Maths Formulas for Physics Maths Formulas for Physics. List of mathematical formulas used in...
  5. Trigonometric multiple and sub-multiple angle formulas Trigonometric multiple and sub-multiple angle formulas. Trigonometric formulas for multiple...