# Exponential Function.

**Exponential Function:**

Exponential function is the function which is defined by the following formula:

y=f(x)=a^{x}

Where , a is a constant great than 0 and a , x both are real numbers.

In any exponential function defined by formula y=f(x)=a^{x},

“a” is said to be the base of exponential function “f” and “x” is the exponent of “a”.

Some Examples of Exponential Function:

a> if f:A→B is defined by f(x)=2^{x} then “f” is exponential function of base 2. We can show this exponential function in graph as:

b. If g:A→B is a function defined by f(x)=1/2^{x} then “f” is exponential function of base “1/2″ we can show this exponential function in graph as:

Related posts:

- Some simple algebraic functions. Algebraic functions are also called polynomial functions. identity , constant...
- Inverse Function. If a function is defined from set A to set...
- Composite Function. A single function formed by the combination of two or...
- Types of Functions. In mathematics according to the nature shown by a Function...
- Introduction To Functions. A Function from set A to set B is a...