# Derivative of simple algebraic or polynomial functions.

The derivative and calculations on finding derivative of simple algebraic functions or polynomial functions is given below:

1> Derivative of Constant function or derivative of f(x)=y=c (c is a constant)

Let Δx be a small increment in x  and Δy be corresponding increment in y. Then, $f(x+\Delta x)=y+\Delta y=c$
or, $\Delta y=c-y$ $= c - c$ $=0$

and , $\dfrac{\Delta y}{\Delta x}=0$

Thus , $\dfrac{dy}{dx}=\displaystyle\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=0$

2> Derivative of Identity function or derivative of f(x)=y=x

Let Δx be a small increment in x  and Δy be corresponding increment in y. Then, $f(x+\Delta x)=y+\Delta y=x+\Delta x$
or, $\Delta y=x+\Delta x-y$ $=\Delta x$

and , $\dfrac{\Delta y}{\Delta x}=1$

Thus, $\dfrac{dy}{dx}=\displaystyle \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=1$

3> Derivative of simple Quadratic function or derivative of f(x)=y=x2

Let Δx be a small increment in x  and Δy be corresponding increment in y. Then, $f(x+\Delta x)=y+\Delta y=(x+\Delta x)^2$ $=x^2+2.x.\Delta x+\Delta x^2$
or, $\Delta y=x^2+2.x.\Delta x+\Delta x^2-y$ $=\Delta x(2x+\Delta x)$

and, $\dfrac{\Delta x}{\Delta y}=2.x+\Delta x$

Thus, $\dfrac{dy}{dx}=\displaystyle \lim_{\Delta x\to 0}2x+\Delta x=2x$

4> Derivative of Simple cubic function or derivative of f(x)=y=x3

Let Δx be a small increment in x  and Δy be corresponding increment in y. Then, $f(x+\Delta x)= y+\Delta y=(x+\Delta x)^3$ $y+ \Delta y=x^3+3x^2.\Delta x+3x.\Delta x^2+\Delta x^3$

or, $\Delta y=x^3+3x^2.\Delta x+3x.\Delta x^2+\Delta x^3-y$ $=3x^2.\Delta x+3x. \Delta x^2+\Delta x^3$ $=\Delta x(3x^2+3x.\Delta x+\Delta x^2)$

and, $\dfrac{dy}{dx}= 3x^2+3x.\Delta x+\Delta x^2$

Thus, $\dfrac{dy}{dx} = \displaystyle\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\displaystyle\lim_{\Delta x\to 0} 3x^2+3x.\Delta x+\Delta x^2 = 3x^2$

The Conclusion:

If we analysis above four examples and also analysis the derivative of higher degree of functions

Then we can see the following result:

Derivative of simple algebraic functions or polynomial functions

like function f(x)=y=xn

is n.xn-1

or, $\dfrac{dx^n}{dx}=n.x^{n-1}$

Related posts:

1. Derivative or Differential Coefficient of a Function. Differential calculus or the concept of Derivative and Differential Coefficient...
2. Some simple algebraic functions. Algebraic functions are also called polynomial functions. identity , constant...
3. Basic properties or theorems of limit. Four basic properties of limits of a function or limit...
4. Continuity of a function(continuous and discontinuous functions). Continuity of a function , a function can either be...
5. Right hand and Left hand limit of a function. The limit of a function have two categories : Left...