# Transformation Formulas

Transformation Formulas

A one-to-one function with the set of all points in the plane as the domain and the range is called transformation.

The important formulas of Transformation  as listed below:-

1.            reflection in X-axis: P(a, b) = p’(a, – b)

2.            reflection in Y-axis : P(a, b) = p’(- a, b)

3.            reflection in Y = X[W]: P(a, b) = P’(b, a)

4.            reflection in Y = X[Z]: P(a, b) = P’(- b, a)

5.            reflection in X = h[R]: P(a, b) = P’(2h – a, b)

6.            reflection in Y = K[M]: P(a, b) = P’(a, 2k – b)

7.            positive quarter turn about O[Q]: P(a, b) = P’(- b, a)

8.            negative quarter turn about $O [Q^{-1}] : P(a, b) = P'(b, - a)$

9.            half turn about O[H]: P(a, b) = P’(-a, – b)

10.          translation with $T = \left( \dfrac{a}{b} \right) [T]:P(x, y) = P'(a + x, b + y)$

11.          enlarging at O with scale factor K[E]: P(a, b) = P’(ka, kb)

12.          enlarging at P with a scale factor K: P(a, b) = P’(ka + x, kb + y)

13.          enlargement with centre at C (x, y) and K as scale factor denoted by E (c, k); P(a, b) = P’[x + k (a – x), y + k(b – y)]

14.          the scale factor $(k) \\ = \dfrac{length \, of \, the \, side \, of \, image}{length \, of \, the \, corresponding \, sides \, of \, object \, figure} \\ \\ = \dfrac{CP'}{CP}$

15.          rotation P(a, b) about centre

C (x, y) by -90 = P’(b + x – y, -a + x +y)

16.          rotation P(a, b0 about centre

C(x, y) by +90 = P’ (-a + x +y, a – x + y)

17.          rotation P(a, b) about centre

C(x, y) by 180 = p’(2x – y, 2y – b)

18.          combination of transformation:

i.              if Q = positive turn about the origin & W is the reflection in the line y = x, then QW = Y where Y is the reflection in Y-axis.

ii.             $Q^2 = H$ where H is the half turn about O.

iii.            WQ = X where X is the reflection in the X-axis

iv.           $W^2 = I$ where I is the identity transformation.

v.            $Q^{-1}Z = Y$ where $Q^{-1}$ is the negative quarter turn about O.

vi.           $ZQ^{-1} = X$ where Z is the reflection in Y = X axis.

vii.          XH = Y

viii.         YH = X

ix.           XY = H

x.            HYX = 1

TRANSFORMATION USING MATRICES:

I.             $\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}$ represents reflection in X-axis.

II.            $\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$ represent identity transformation.

III.           $\begin{pmatrix}-1 & 0 \\ 0 & 1\end{pmatrix}$ represents reflection in Y-axis.

IV.          $\begin{pmatrix}0 & 1 \\ 1 & 0\end{pmatrix}$ represents reflection in the line Y = X.

V.            $\begin{pmatrix}0 & -1 \\ -1 & 0\end{pmatrix}$ represents reflection in the line Y = -X.

VI.          $\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}$ represent positive quarter turn $\left ( +90 ^\circ \right)$about the origin.

VII.         $\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix}$ represents negative quarter turn$\left ( -90 ^\circ \right)$ about the origin.

VIII.        $\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}$ represents half $180^\circ$ turn about origin.

IX.           $\begin{pmatrix}k & 0 \\ 0 & k\end{pmatrix}$ represents the enlargement with centre at the origin and scale factor k.

X.            The 2 * 1 matrix $\begin{pmatrix}a \\ b\end{pmatrix}$ represents translation through ‘a’ units along X-axis and ‘b’ units along Y-axis.

Related posts:

1. Matrix Formulas Matrix Formulas In mathematics the word ‘Matrix’ means  the rectangular...
2. Trigonometric transformation formulas Trigonometric transformation formulas. Trigonometric formulas used to transform an trigonometric...
3. Vector Geometry Formulas Vector Geometry Formulas   Vector Geometry in simple words means...
4. Vector Formulas Vector Formulas A vector can also be defined as an...
5. Maths Formulas for Physics Maths Formulas for Physics. List of mathematical formulas used in...