Limit Formulas





Limit and continuity Formulas

Concept of limit and continuity was developed in 17th century by mathematicians, primarily to foster the development of calculas. The concept of the limit is very important in terms of calculas.

Some important formulas of limit and continuity are as follows:-

1. \displaystyle{\lim_{x\to a} \frac{x^n- a^n}{x-a} = na^{n- 1}}, for all rational value of n
2.\displaystyle{\lim_{x \to 0}\frac{\sin x}{x} = 1} or \displaystyle{\lim_{x \to 0}\frac{x}{\sin x} = 1} \\[5mm]

 3. \displaystyle{\lim_{x \to 0} \frac{e^x- 1}{x} = 1} \\[5mm] 4. \displaystyle{\lim_{x\ to 0} \frac{\log (1 + x)}{x} = 1} \\[5mm] 5. \displaystyle{\lim_{x \to \infty} \left( 1 + \dfrac{1}{x} \right)^n = e} \\[5mm] 6. \displaystyle{\lim_{x \to 0}(1 + x)^\frac{1}{x} = e} \\[5mm] 7. \displaystyle{\lim_{x \to 0}\frac{\tan x}{x} = 1}

Note: indeterminate forms are \dfrac{0}{0}, \infty^0, \dfrac{\infty}{\infty}, \infty- \infty, 1^\infty, 0^\infty



Related posts:

  1. Basic properties or theorems of limit. Four basic properties of limits of a function or limit...
  2. Trigonometric transformation formulas Trigonometric transformation formulas. Trigonometric formulas used to transform an trigonometric...
  3. The concept of Limit. Limit of a function is the value to which function...
  4. Right hand and Left hand limit of a function. The limit of a function have two categories : Left...
  5. Integration Formulas Using Integration formulas is one of the most basic and...